viernes, 6 de febrero de 2015


Diferencia entre los elementos orgánicos e inorgánicos

COMPUESTOS INORGÁNICOS:
Sus moléculas pueden contener átomos de cualquier elemento, incluso carbono bajo la forma de CO, CO2, carbonatos y bicarbonatos.
Se conocen aproximadamente unos 500000 compuestos.
Son, en general, "termo estables" es decir: resisten la acción del calor, y solo se descomponen a temperaturas superiores a los 700ºC.
Tienen puntos de ebullición y de fusión elevados.
Muchos son solubles en H2O y en disolventes polares.
Fundidos o en solución son buenos conductores de la corriente eléctrica: son "electrólitos".
Las reacciones que originan son generalmente instantáneas, mediante reacciones sencillas e iónicas.
COMPUESTOS ORGÁNICOS:

Sus moléculas contienen fundamentalmente átomos de C, H, O, N, y en pequeñas proporciones, S, P, halógenos y otros elementos.
El número de compuestos conocidos supera los 10 millones, y son de gran complejidad debido al número de átomos que forman la molécula.
Son "termolábiles", resisten poco la acción del calor y descomponen bajo de los 300ºC. suelen quemar fácilmente, originando CO2 y H2O.
Debido a la atracción débil entre las moléculas, tienen puntos de fusión y ebullición bajos.
La mayoría no son solubles en H2O (solo lo son algunos compuestos que tienen hasta 4 ó 5 átomos de C). Son solubles en disolventes orgánicos: alcohol, éter, cloroformo, benceno.
No son electrólitos.
Reaccionan lentamente y complejamente

Que es un elemento
 es un tipo de materia constituida por átomos de la misma clase. En su forma más simple posee un número determinado de protones en su núcleo, haciéndolo pertenecer a una categoría única clasificada con el número atómico, aun cuando este pueda desplegar distintas masas atómicas. Es un átomo con características físicas únicas, aquella sustancia que no puede ser descompuesta mediante una reacción química, en otras más simples. No existen dos átomos de un mismo elemento con características distintas y, en el caso de que estos posean número másico distinto, pertenecen al mismo elemento pero en lo que se conoce como uno de sus isótopos. También es importante diferenciar entre un «elementos químicos» de una sustancia simple. Los elementos se encuentran en la tabla periódica de los elementos.
El ozono (O3) y el dioxígeno (O2) son dos sustancias simples, cada una de ellas con propiedades diferentes. Y el elemento químico que forma estas dos sustancias simples es el oxígeno (O). Otro ejemplo es el elemento químicocarbono, que se presenta en la naturaleza como grafito o como diamante (estados alotrópicos).
Algunos elementos se han encontrado en la naturaleza y otros obtenidos de manera artificial, formando parte de sustancias simples o de compuestos químicos. Otros han sido creados artificialmente en los aceleradores de partículas o en reactores atómicos. Estos últimos suelen ser inestables y sólo existen durante milésimas de segundo. A lo largo de la historia del universo se han ido generando la variedad de elementos químicos a partir denucleosíntesis en varios procesos, fundamentalmente debidos a estrellas.
Los nombres de los elementos químicos son nombres comunes y como tales deben escribirse sin mayúscula inicial, salvo que otra regla ortográfica lo imponga.
Átomo
El átomo es un constituyente de la materia ordinaria, con propiedades químicas bien definidas, formado a su vez por constituyentes más elementales sin propiedades químicas bien definidas. Cada elemento químico está formado por átomos del mismo tipo (con la misma estructura electrónica básica), y que no es posible dividir mediante procesos químicos.
Actualmente se conoce que el átomo está compuesto por un núcleo atómico, en el que se concentra casi toda su masa, rodeado de una nube de electrones. Esto fue descubierto a principios del siglo XX, ya que durante el siglo XIX se había pensado que los átomos eran indivisibles, de ahí su nombre a-tómo- 'sin división'. Poco después se descubrió que también el núcleo está formado por partes, como los protones, con carga positiva, y neutrones, eléctricamente neutros.nota 1 Los electrones, cargados negativamente, permanecen ligados a este mediante la fuerza electromagnética.
Los átomos se clasifican de acuerdo al número de protones y neutrones que contenga su núcleo. El número de protones o número atómico determina su elemento químico, y el número de neutrones determina su isótopo. Un átomo con el mismo número de protones que de electrones es eléctricamente neutro. Si por el contrario posee un exceso de protones o de electrones, su carga neta es positiva o negativa, y se denomina ion.

Teorías emitidas por el átomo
La teorí a atómica de Dalton.
John Dalton (1766-1844). Químico y físico británico. Creó una importante teoría atómica de la materia. En 1803 formuló la ley que lleva su nombre y que resume las leyes cuantitativas de la química (ley de la conservación de la masa, realizada por Lavoisier; ley de las proporciones definidas, realizada por Louis Proust; ley de las proporciones múltiples, realizada por él mismo). Su teoría se puede resumir en:
1.- Los elementos químicos están formados por partículas muy pequeñas e indivisibles llamadas átomos.
2.- Todos los átomos de un elemento químico dado son idénticos en su masa y demás propiedades.
3.- Los átomos de diferentes elementos químicos son distintos, en particular sus masas son diferentes.
4.- Los átomos son indestructibles y retienen su identidad en los cambios químicos.
5.- Los compuestos se forman cuando átomos de diferentes elementos se combinan entre sí, en una relación de números enteros sencilla, formando entidades definidas (hoy llamadas moléculas).
Representación de distintos átomos según Dalton:
¡ Oxígeno
¤ Hidrógeno
Å Azufre Para Dalton los átomos eran esferas macizas.
ã Cobre
l Carbono
Representación de un cambio químico, según Dalton:
¡ + ¤ ð ¡ ¤
Esto quería decir que un átomo de oxígeno más un átomo de hidrógeno daba un átomo o molécula de agua.
La formación de agua a partir de oxígeno e hidrógeno supone la combinación de átomos de estos elementos para formar "moléculas" de agua. Dalton, equivocadamente, supuso que la molécula de agua contenía un átomo de oxígeno y otro de hidrógeno.
Dalton, además de esta teoría creó la ley de las proporciones múltiples. Cuando los elementos se combinan en más de una proporción, y aunque los resultados de estas combinaciones son compuestos diferentes, existe una relación entre esas proporciones.
Cuando dos elementos se combinan para formar más de un compuesto, las cantidades de uno de ellos que se combina con una cantidad fija del otro están relacionadas entre sí por números enteros sencillos.
A mediados del siglo XIX, unos años después de que Dalton enunciara se teoría, se desencadenó una serie de acontecimientos que fueron introduciendo modificaciones al modelo atómico inicial.
De hecho, el mundo atómico es tan infinitamente pequeño para nosotros que resulta muy difícil su conocimiento. Nos hallamos frente a él como si estuviésemos delante de una caja cerrada que no se pudiese abrir. Para conocer su contenido solamente podríamos proceder a manipular la caja (moverla en distintas direcciones, escuchar el ruido, pesarla...) y formular un modelo de acuerdo con nuestra experiencia. Este modelo sería válido hasta que nuevas experiencias nos indujeran a cambiarlo por otro. De la misma manera se ha ido construyendo el modelo atómico actual; de Dalton hasta nuestros días se han ido sucediendo diferentes experiencias que han llevado a la formulación de una serie de modelos invalidados sucesivamente a la luz de nuevos acontecimientos.
El modelo atómico de Thomsom.
Thomson, sir Joseph john (1856-1940). Físico británico. Según el modelo de Thomson el átomo consistía en una esfera uniforme de materia cargada positivamente en la que se hallaban incrustados los electrones de un modo parecido a como lo están las semillas en una sandía. Este sencillo modelo explicaba el hecho de que la materia fuese eléctricamente neutra, pues en los átomos de Thomson la carga positiva era neutralizada por la negativa. Además los electrones podrían ser arrancados de la esfera si la energía en juego era suficientemente importante como sucedía en los tubos de descarga.
J. J. Thomson demostró en 1897 que estos rayos se desviaban también en un campo eléctrico y eran atraídos por el polo positivo, lo que probaba que eran cargas eléctricas negativas. Calculó también la relación entre la carga y la masa de estas partículas.
Para este cálculo realizó un experimento: hizo pasar un haz de rayos catódicos por un campo eléctrico y uno magnético.
Cada uno de estos campos, actuando aisladamente, desviaba el haz de rayos en sentidos opuestos. Si se dejaba fijo el campo eléctrico, el campo magnético podía variarse hasta conseguir que el haz de rayos siguiera la trayectoria horizontal original; en este momento las fuerzas eléctricas y magnética eran iguales y, por ser de sentido contrario se anulaban.
El segundo paso consistía en eliminar el campo magnético y medir la desviación sufrida por el haz debido al campo eléctrico. Resulta que los rayos catódicos tienen una relación carga a masa más de 1.000 veces superior a la de cualquier ion.
Esta constatación llevó a Thomson a suponer que las partículas que forman los rayos catódicos no eran átomos cargados sino fragmentos de átomos, es decir, partículas subatómicas a las que llamó electrones.
Las placas se colocan dentro de un tubo de vidrio cerrado, al que se le extrae el aire, y se introduce un gas a presión reducida.

El modelo de Rutherford.
Sir Ernest Rutherford (1871-1937), famoso hombre de ciencia inglés que obtuvo el premio Nobel de química en 1919, realizó en 1911 una experiencia que supuso en paso adelante muy importante en el conocimiento del átomo.
La experiencia de Rutherford consistió en bombardear con partículas alfa una finísima lámina de oro. Las partículas alfa atravesaban la lámina de oro y eran recogidas sobre una pantalla de sulfuro de cinc.
La importancia del experimento estuvo en que mientras la mayoría de partículas atravesaban la lámina sin desviarse o siendo desviadas solamente en pequeños ángulos, unas cuantas partículas eran dispersadas a ángulos grandes hasta 180º.

El hecho de que sólo unas pocas radiaciones sufriesen desviaciones hizo suponer que las cargas positivas que las desviaban estaban concentradas dentro de los átomos ocupando un espacio muy pequeño en comparación a todo el tamaño atómico; esta parte del átomo con electricidad positiva fue llamado núcleo.
Rutherford poseía información sobre el tamaño, masa y carga del núcleo, pero no tenía información alguna acerca de la distribución o posición de los electrones.
En el modelo de Rutherford, los electrones se movían alrededor del núcleo como los planetas alrededor del sol. Los electrones no caían en el núcleo, ya que la fuerza de atracción electrostática era contrarrestada por la tendencia del electrón a continuar moviéndose en línea recta. Este modelo fue satisfactorio hasta que se observó que estaba en contradicción con una información ya conocida en aquel momento: de acuerdo con las leyes del electromagnetismo, un electrón o todo objeto eléctricamente cargado que es acelerado o cuya dirección lineal es modificada, emite o absorbe radiación electromagnética.
El electrón del átomo de Rurherford modificaba su dirección lineal continuamente, ya que seguía una trayectoria circular. Por lo tanto, debería emitir radiación electromagnética y esta radiación causaría la disminución de la energía del electrón, que en consecuencia debería describir una trayectoria en espiral hasta caer en el núcleo. El modelo de Rutherford fue sustituido por el de Bohr unos años más tarde.

El modelo atómico de Bhor.
Niels Bohr (1885-1962 fue un físico danés que aplicó por primera vez la hipótesis cuántica a la estructura atómica, a la vez que buscó una explicación a los espectros discontinuos de la luz emitida por los elementos gaseosos. Todo ello llevó a formular un nuevo modelo de la estructura electrónica de los átomos que superaba las dificultades del átomo de Rutherford.
Este modelo implicaba los siguientes postulados:
1.- El electrón tenía ciertos estados definidos estacionarios de movimiento (niveles de energía) que le eran permitidos; cada uno de estos estados estacionarios tenía una energía fija y definida.
2.- Cuando un electrón estaba en uno de estos estados no irradiaba pero cuando cambiaba de estado absorbía o desprendía energía.
3.- En cualquiera de estos estados, el electrón se movía siguiendo una órbita circular alrededor del núcleo.
4.- Los estados de movimiento electrónico permitidos eran aquellos en los cuales el momento angular del electrón (m · v · r ) era un múltiplo entero de h/2 · 3.14.
Vemos pues que Bohr aplicaba la hipótesis cuántica por Planck en 1900.
La teoría ondulatoria electromagnética de la luz era satisfactoria en cuanto explicaba algunos fenómenos ópticos tales como la difracción o la dispersión, pero no explicaba otros fenómenos tales como la irradicación de un cuerpo sólido caliente. Planck resolvió el problema suponiendo que un sistema mecánico no podía tener cualquier valor de la energía, sino solamente ciertos valores.
Así, en un cuerpo sólido caliente que irradia energía, Planck consideró que una onda electromagnética de frecuencia era emitida por un grupo de átomos que circulaba con la misma frecuencia.
Aplicando esta hipótesis a la estructura electrónica de los átomos se resolvía la dificultad que presentaba el átomo de Rutherford. El electrón, al girar alrededor del núcleo, no iba perdiendo la energía, sino que se situaba en unos estados estacionarios de movimiento que tenían una energía fija. Un electrón sólo perdía o ganaba energía cuando saltaba de un estado (nivel) a otro.
Por otro lado, el modelo de Bohr suponía una explicación de los espectros discontinuos de los gases, en particular del más sencillo de todos, el hidrógeno. Una raya de un espectro correspondía a una radiación de una determinada frecuencia.
¿Por qué un elemento emite solamente cierta frecuencia ? Veamos la respuesta:
En condiciones normales los electrones de un átomo o ion se sitúan en los niveles de más baja energía. Cuando un átomo recibe suficiente energía, es posible que un electrón salte a un nivel superior a aquel en que se halla. Este proceso se llama excitación. Un electrón excitado se halla en un estado inestable y desciende a un nivel inferior, emitiendo una radiación cuya energía será igual a la diferencia de la que tienen los dos niveles.
La energía del electrón en el átomo es negativa porque es menor que la energía del electrón libre.
Al aplicar la formula de Bohr a otros átomos se obtuvieron resultados satisfactorios, al coincidir el pronóstico con el resultado experimental de los espectros de estos átomos.
El modelo de Thomson presentaba un átomo estático
y macizo. Las cargas positivas y negativas estaban
en reposo neutralizándose mutuamente. Los electrones
estaban incrustados en una masa positiva como las pasas en
un pastel de frutas. El átomo de Rutherford era dinámico
y hueco, pero de acuerdo con las leyes de la física clásica
inestable. El modelo de Bohr era análogo al de Rutherford,
pero conseguía salvar la inestabilidad recurriendo a la
noción de cuantificación y junto con ella a la idea de que la

física de los átomos debía ser diferente de la física clásica.